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High-performance flight control systems based on the nonlinear dynamic inversion principle require highly

accurate models of aircraft aerodynamics. In general, the accuracy of the internal model determines to what degree

the system nonlinearities can be canceled; the more accurate the model, the better the cancellation, and with that, the

higher the performance of the controller. In this paper, a new control system is presented that combines nonlinear

dynamic inversionwithmultivariate simplex spline-based control allocation. Three control allocation strategies that use

novel expressions for the analytic Jacobian and Hessian of the multivariate spline models are presented. Multivariate

simplex splines have a higher approximation power than ordinary polynomial models and are capable of accurately

modeling nonlinear aerodynamics over the entire flight envelope of an aircraft. This nonlinear spline based controller is

applied to control a high-performance aircraft (F-16) with a large flight envelope. The simulation results indicate that

perfect feedback linearization can be achieved throughout the entire flight envelope, leading to a significant increase in

tracking performance compared with ordinary polynomial-based nonlinear dynamic inversion.

Nomenclature

Ax, Ay, Ax = specific forces along the body x∕y∕z axes, m∕s2
b = wing span, m
b�x� = barycentric transform of point x
C = dimensionless coefficient
c = B-coefficient vector
�c = mean aerodynamic chord, m
d̂ = total number of valid permutations
H = smoothness matrix
I = inertia matrix
J = total number of simplices
J = cost function
l, m, n = aerodynamicmoment around the body x∕y∕z axes
p, q, r = roll, pitch, and yaw rate around the body x∕y∕z

axes, rad∕s
ps = static pressure, Pa
�q = dynamic pressure, Pa
S = wing area, m2

Srd = spline space of degree d and continuity order r
T = triangulation
tj = simplex j
u = input vector
u, v, w = velocity components along the body x∕y∕z

axes, m∕s
V = airspeed, m∕s
X = regression matrix
x = state vector
Y = observation vector

α, β = angle of attack and sideslip angle, rad
δ = control surface deflection, rad
λ = actuator lag time constant
ϵ = residual vector
κ = multi-index
ν = virtual input
ρ = air density, kg∕m3

τ = virtual input
ϕ, θ, ψ = roll, pitch, and yaw angles, rad

Subscripts

a = aileron
e = elevator
r = rudder
lef = leading-edge flap

I. Introduction

N ONLINEAR dynamic inversion (NDI) is a physical control
approach in which the control law is explicitly defined in terms

of an internal model [1]. The internal model for the system and input
dynamics is used to cancel the nonlinearities, after which a single
linear controller can be used to control the system.Amajor advantage
of NDI is that gain scheduling is avoided through the entire flight
envelope. Furthermore, the simple structure of NDI allows easy and
flexible design for all flying modes and is therefore a popular method
for aircraft flight control [2,3]. The NDI controller can be augmented
with a control allocation (CA) module in the case that an aircraft has
redundant or cross-coupled control effectors [4]. In this case, the
command variables are the three desired aerodynamic moments,
whereas the actual control effector displacements are determined
from the desired moments together with the effector constraints in a
constrained optimization problem [4]. It is this particular formofNDI
that is the subject of study of this paper.
Because the NDI control law is explicitly defined in terms of

the internal model, NDI is sensitive to modeling errors. The accuracy
of the internal model determines to what degree the system
nonlinearities are canceled; the more accurate the model, the better
the cancellation, and with that, the higher the performance of the
flight controller. Some of these model inaccuracies can be handled
by applying robust control techniques such as structured value μ
synthesis [1,5] or incremental NDI [6]. However, significant model-
ing errors will still lead to unwanted control system behavior.
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Currently, most NDI controllers use polynomial structures for the
system and input dynamics. It is well known that polynomial models
have limited approximation power, which is directly proportional to
their degree. As a result, many attempts have been made in the past to
increase the accuracy of the onboard models, using, for example,
neural networks [7–9]. In this paper, a new approach is presented for
increasing the accuracy of onboard models using multivariate
simplex spline approximators.
A simplex spline approximator is an analytical function that

consists of polynomial basis functions that are each defined on
a simplex ([10] pp. 18–25). Any number of basis polynomials
can be combined with predefined continuity by combining simplices
into a geometric structure called a triangulation. The approximation
power of simplex spline functions, therefore, is not only proportional
to the polynomial degree, but also to the size and density of the
underlying triangulation. Themost significant advantages of simplex
splines over other function approximators like neural networks
is their linear-in-the-parameters property, their numerical stability,
their transparency, and the ease with which they can be integrated
into standard parameter estimation routines [11].
Multivariate simplex splines have recently been used in a

framework for aerodynamic model identification [12–14], where it
was shown that they can more accurately approximate both local and
global scale system nonlinearities than methods based on ordinary
polynomials. The proven advantages of the simplex splines as
powerful, numerically stable, and transparent nonlinear function
approximators make them well suited to replace current onboard
models, thereby improving the performance and robustness of
nonlinear model-based flight control systems.
Until now, however, no attempt has been made to design a flight

controller that uses onboard simplex spline models. As it turns out,
integrating a multivariate simplex spline-based aerodynamic model
into an inversion-based flight control system is not trivial. The basis
polynomials of the simplex splines are defined locally on each
simplex in terms of barycentric coordinates, instead of globally in
terms of Cartesian coordinates ([10] pp. 18–25). A direct conse-
quence of this is that the simplex spline basis polynomials are
nonaffine in the control inputs, requiring a special coordinate trans-
formation scheme to relate them to the aircraft states and control
inputs [15].
The main contribution of this paper is a new nonlinear control

scheme, indicated as SNDI, that combines nonlinear dynamic
inversion with control allocation based an onboard simplex spline
models. This contribution requires the development of new CA
strategies that can be applied to simplex spline models that are
nonaffine functions of the aircraft states and control inputs. In this
paper, threenewCAstrategies for simplex splinemodels are presented:
a linear, a successive linear, and a fully nonlinear strategy.
The SNDI control method is demonstrated using a high-fidelity

F-16 simulation with which a number of high-amplitude maneuvers
are performed in nonlinear regions of the flight envelope. It is shown
that SNDI results in higher reference tracking performance than
ordinary polynomial NDI, in particular, when performing high-
amplitudemaneuvers in nonlinear regions of the flight envelope such
as the high-angle-of-attack and high-angle-of-sideslip regions.
Although the current SNDI focuses primarily on reducing static
aerodynamic modeling errors, it should be seen as the first step
toward a forthcoming spline-based adaptive nonlinear flight control
system of the sort presented in [8,9].
The paper has the following outline: In Sec. II, the aircraft

model used in this study is described. In Sec. III, a preliminary on
multivariate simplex splines is given. In Sec. IV, an overview is
given of the SNDI control approach, which is the augmentation of
NDI with control allocation based on the onboard spline model. The
NDI flight control design is given in Sec. V. In Sec. IV, the F-16
aerodynamic model is identified using both simplex splines and
polynomial model structures. In Sec. VII, the three new approaches
to control allocation based on the onboard spline model are presented.
Finally, in Sec. VIII, the spline-based controller is evaluated and
compared with a polynomial-based controller, followed by conclu-
sions in Sec. IX.

II. Aircraft Model

In this section, the simulation model that will be used in the
remainder of this work is introduced. The aircraft to be controlled is a
model of the F-16 fighter aircraft from NASA, which is based on a
set of data tables based on wind-tunnel measurements [16]. This
model is used to generate simulated aerodynamic force and moment
measurements, which are used to estimate the multivariate spline-
based aerodynamic models in Sec. VI. The model has the traditional
aerodynamic control surfaces: elevator, ailerons, and rudders for
pitch, roll, and yaw control. In addition, the leading-edge flap is
scheduledwith angle of attack and �q∕ps to optimize performance and
has the following relationship [16]:

δlef � 1.38
2s� 7.25

s� 7.25
α − 9.05

�q

ps
� 1.45 (1)

Models for the actuators are included in the form of first-order lags:

_u � 1

λ
�ucom − u� (2)

in which the commanded input is bounded by umin ≤ ucom ≤ umax

and the deflection rate is bounded by j _uj ≤ _ulim. The time constants
and actuator limits are listed in Table 1 [16] and ([17] pp. 633–664).
For simulating the response and for flight control design, the flat
Earth, body axis six-degree-of-freedom equations of motion are
used ([17] pp. 107–116). No external disturbances likewind gusts are
added to the models and the sensor information is considered as
not contaminated. All simulations are performed with a sample
frequency of 100 Hz.

III. Preliminaries on Multivariate Simplex Splines

This section serves as introduction to the general theory of
multivariate simplex splines and the techniques that can be used for
aerodynamic model identification using simplex splines. These
techniques are based on the work presented in [11,18]. For a more
in-depth coverage of simplex spline theory, we refer to the work by
Lai and Schumaker [10]. Additionally, a practical example of the use
of multivariate simplex splines for scattered data approximation is
presented in Appendix A.

A. Simplex Spline Functions and Spline Spaces

A simplex spline function consists of a set of basis polynomials of
degree d, each defined on an individual simplex with predefined
continuity between the simplices tj:

s�x� � δ1�x�pt1�x� � δ2�x�pt2�x�

� · · · �δj�x�ptj�x� �
XJ
j�1

δj�x�ptj�x� (3)

with J the total number of simplices and with δj�x� a membership
function that relates data point x to the simplex in which it is defined:

δj�x� �
�
1 if x ∈ tj
0 if x ∈= tj

(4)

The approximation power of spline functions is partly determined by
the triangulation structure. A triangulation is a partitioning of a
domain into a set of J nonoverlapping simplices:

Table 1 Actuator model [16] and ([17] pp. 633–664)

Deflection
limit, deg

Rate limit,
deg ∕s

Time constant,
s lag

Elevator �25.0 60 0.0495
Ailerons �21.5 80 0.0495
Rudder �30.0 120 0.0495
Leading-edge
flap

0–25 25 0.136
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T :�
[J
j�1
tj; ti ∩ tj ∈ f∅; ~tg; ∀ ti; tj ∈ T (5)

with the edge simplex ~t a k simplex with 0 ≤ k ≤ n − 1. The use of
spline spaces provide a convenient notation for stating the degree,
continuity, and triangulation structure of a spline solution without
having to specify individual spline functions ([10] pp. 127–141):

Srd�T � :� s ∈ Cr�T �: sjt ∈ Pd; ∀ t ∈ T (6)

with s the n-variate simplex spline function of degree d and
continuity order r on the triangulation T and withPd the space of all
polynomials of total degree d.

B. Barycentric Coordinates

The individual basis polynomials of the spline function in Eq. (3)
are defined on simplices and expressed in terms of barycentric
coordinates: pt�b�x��. The n-simplex t is defined as the convex hull
of a set of n� 1 unique, nondegenerate points in n-dimensional
space:

t � hv0; v1; : : : ; vni (7)

The barycentric coordinate system is a local coordinate system with
respect to the n-simplex t. Every point x � �x1; x2; : : : ; xn� can be
described in terms of a unique weighted vector sum of the vertices of
simplex t:

x �
Xn
i�0

bivi;
Xn
i�0

bi � 1 (8)

Using these properties, the barycentric coordinate b�x� � �b0;
b1; : : : ; bn� of x with respect to the n-simplex t can be explicitly
calculated with

2
6666664

b1

b2

..

.

bn

3
7777775
� � �v1 − v0� �v2 − v0� · · · �vn − v0� �−1�x − v0�

� Λ�x − v0� (9)

and

b0 � 1 −
Xn
i�1

bi (10)

C. B Form

Each polynomial ptj �b�x�) in Eq. (3) is expressed in the B form

ptj�b�x�� �
X
jκj�d

c
tj
κ
d!

κ!

Yn
i�0
bκii �

X
jκj�d

c
tj
κ Bdκ �b�x�� (11)

with cκ the B coefficient and κ the multi-index defined as

κ :� �κ0; κ1; : : : ; κn� ∈ Nn�1 (12)

The multi-index has the following properties:

jκj � κ0 � κ1� · · · �κn � d (13)

κ! � κ0!κ1! · · · κn! (14)

The elements of the multi-index are sorted lexicographically [19]:

κ ∈ f�d; 0; 0 ··; 0�;
�d − 1; 1; 0 ··; 0�; �d − 1; 0; 1; ··; 0�; : : : ;
�0; ··; 0; 1; d − 1�; �0; ··; 0; 0; d�g (15)

The total number of valid permutations of κ, and therefore the total
number of individual basis polynomials, is d̂:

d̂ �
�
d� n
n

�
� �d� n�!

n!d!
(16)

Equation (11) can also be written in vector form [11]. Define the
vector of basis polynomials as

Bdtj�b�x��

:�
h
Bdd;0;··;0�b�x�� Bdd−1;1;··;0�b�x�� · · · Bd0;··;0;d�b�x��

i
� �Bdκ �b�x���jκ�dj ∈ R1×d̂ (17)

and the vector of B coefficients

ctj :� �ctjκ �jκj�d ∈ Rd̂×1 (18)

With these definitions, the per-simplex B form in vector formulation
is

ptj�b�x�� � Bdtj �b�x��ctj (19)

D. Regression Model Using B-Form Polynomials

This section presents the linear regression model structure from
[11] for spline functions using the B-form polynomials. Using
Eqs. (3) and (19), the B-form polynomials can be used as regressors
for a new observation pair �x�i�; y�i�� as follows:

y�i� �
XJ
j�1

δj�x�i��Bdtj�b�x�i���ctj � ϵ�i� (20)

To improve readability, the following shorthand notation is used for
Eq. (20):

y�i� �
XJ
j�1

δj�i�Bdtj�i�ctj � ϵ�i� (21)

These shorthand notations are used through the rest of the paper.
Equation (21) can be restated in matrix form. First, define a per-
simplex d̂ × d̂ diagonal data membership matrix for observation i:

Dtj �i� � ��δj�i�q;q�d̂q�1 (22)

The block diagonal full triangulation data membershipmatrixD for a
single observation is a matrix with Dtj blocks on the main diagonal:

D�i� � ��Dtj�i�j;j�Jj�1 (23)

Using the per-simplex vector of B-form basis polynomials from
Eq. (17), the full triangulation basis function vector Bd�i� for
observation i is defined as

Bd�i� :� �Bdt1�i� Bdt2�i� · · · Bdtj�i� � � �Bdtj �i��Jj�1 ∈ R1×J·d̂

(24)

Using the per-simplex vector of B-form basis polynomials from
Eq. (18), the full triangulation vector of B coefficients is constructed
as

1842 TOL ETAL.
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c � �ctj �Jj�1 ∈ RJ·d̂×1 (25)

With the definitions in Eqs. (23–25), Eq. (20) can be written as

y�i� � Bd�i�D�i�c� ϵ�i� � X�i�c� ϵ�i� (26)

which, for all observations, results in a linear regression scheme for
multivariate simplex splines:

Y � Xc� ϵ (27)

E. Spline Model Estimation

Equation (27) can be solved using an equality constrained ordinary
least-squares (LS) estimator. The LS problem needs to be constrained
to guarantee continuity between the simplices. TheB coefficients can
be estimated by solving the constrained least-squares problem:

min
c

1

2
�Y − Xc�T�Y − Xc� subject to Hc � 0 (28)

with H the smoothness matrix, to guarantee continuity between the
simplices. Using Lagrange multipliers, this leads to the following LS
estimator:

�
ĉ
λ̂

�
�
�
XTX HT

H 0

���XTY
0

�
�
�
C1 C2

C3 C4

��
XTY
0

�
(29)

The estimated B coefficients can be calculated as follows:

ĉ � C1X
TY (30)

The smoothness matrix is computed using de Boor’s continuity
equations. The formulation in ([10] pp. 133–135) and [20] is used for
the continuity equations for degree r between the edges of two
neighboring simplices ti and tj:

cti�κ0; : : : ;κn−1 ;m� �
X
jγj�m

c
tj
�κ0; : : : ;κn−1 ;0��γB

m
γ �v	�; 0 ≤ m ≤ r (31)

with γ � �γ0; γ1; : : : ; γn� a multi-index independent of κ, and v	 the
out-of-edge vertex of simplex tj. Using the valid permutations for the
multi-indices κ and γ and combining the continuity equations for all
edges, the continuity equations can be written in vector form:

Hc � 0 (32)

with H ∈ RR·E×J·d̂, R the number of continuity conditions per edge,
and E the number of edges in the triangulation.

IV. Spline-Based NDI Control: Component Overview

The approach used for spline-basedNDI control is the augmentation
of NDI with control allocation based on the onboard aerodynamic
spline model. The control diagram is shown in Fig. 1. All aircraft
control laws based on NDI can be written in terms of required control
moments when controlling the attitude using aerodynamic control
surface deflections or in terms of control forces when controlling the
airspeedusing the throttle. The control forces andmoments can be seen
as a virtual control input τ, which have to be translated into actuator
settings. This is also known as the process of control allocation [4].
When the NDI control law is defined in terms of the aircraft stability
and control derivatives, the NDI control algorithm automatically
involves some form of control allocation [4,21]. By using polynomial
models affine in the control input, the actuator settings can be
calculated directly. However, when using nonaffine simplex spline-
based aerodynamic models in terms of local barycentric coordinates,
the actuator setting cannot be calculated directly and the NDI structure
requires a separate control allocation module. See also the example in
Appendix B for an illustration of the nonaffinity of spline models. The
separation of the control allocation task from the NDI control laws
allows the development of general spline model-based allocation
strategies, which are discussed in Sec. VII. This section focuses on the
combined control structure, the formulation of the control allocation
problem, and existing solution methods.

A. Nonlinear Dynamic Inversion

Consider the aircraft state equations in the input affine form:

_x � f�x� � g�x�τ (33)

τ � Φ�x; u� (34)

with x ∈ Rn the state vector, u ∈ Rm the control input vector, and
τ ∈ Rl the virtual controls assumed to be a nonlinear function of the
aircraft state and control input. The crux of NDI is to solve for the
input τ by introducing an outer-loop control input ν:

τreq � g−1�x��ν − f�x�� (35)

Which results in a closed-loop systemwith a decoupled linear input–
output relation:

_x � ν (36)

Fig. 1 Combined control structure: NDI inner loop and linear control outer loop combined with control allocation.
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NDI is based on the assumption that the internal model is exactly
known, such that the model is fully linearized. However, this
assumption is not realistic in practice and there will also be an
inversion error related to the feedback linearization. In this case, the
closed-loop system is given by

_x � ν� Δ (37)

with Δ the inversion error. The required virtual control input τreq is
either the requiredmoment for rotational control or the required force
for translational control. For example, consider the aircraft rate
control problem:

_ω � I−1M − I−1ω × Iω (38)

Applying NDI results in the following control law for the required
control moment:

Mreq � I�ν� I−1ω × Iω� (39)

The required control moment has to be translated into control surface
deflections based on the onboard model forM. The accuracy of the
onboard model determines to what extent the nonlinearities are
canceled; themore accurate themodel, the smaller the inversion error
Δ, and with that, the higher the controller performance.
Instead of using the frequently used polynomial model structures,

the model forM of the F-16 is identified using simplex splines (see
Sec. VI). Simplex splines provide a significant increase in modeling
accuracy compared with polynomials. In this paper, the effect of the
increased model accuracy on the NDI controller performance is
investigated.

B. Control Allocation

The mapping in Eq. (34) maps the physical control inputs to the
virtual controls:

τ � Φ�x;u�: Rm → Rl (40)

The control allocation problem considers the inversion of this
mapping:

u � Φ−1�x; τ�: Rl → Rm (41)

The control allocation problem can be stated as follows: Given a
virtual command τ, determine u satisfying the actuator position and
rate constraints, such that τ � Φ�x; u�. The input will be determined
based on the onboard spline model for Φ�x; u�. Control allocation
problems are often formulated as optimization problems with a least-
squares objective function subject to actuator constraints. With
optimization-basedmethods, a cost function that relates control effort
and the required demand isminimized. In [22,23], three formulations
are given:
1) Error minimization problem:

min
u≤u≤ �u

J � kΦ�x;u� − τreqk (42)

2) Control minimization problem:

min
u≤u≤ �u

J � kuk subject to Φ�x;u� � τreq (43)

3) Mixed optimization problem:

min
u≤u≤ �u

J � kΦ�x;u� − τreqk � ϵkuk (44)

The controls are constrained by their minimum u and maximum �u
values.

Most existing methods derived for overactuated systems (l < m)
for solving Eqs. (42–44) consider linear effector models of the
form

τ � Φ�x; u� � Gu (45)

with G an l ×m matrix. See [22,23] for a survey on optimization-
based control allocation approaches for linear effector models. A
popular and efficient solution for real-time control allocation is the
pseudoinverse solution (see, e.g., [21,24,25] for applications). When
the actuator constraints are dropped, the solution to the l2 norm
control effort minimization problem in Eq. (43) using the linear
effector model in Eq. (45) has a pseudoinverse solution:

u � G�τ (46)

with the pseudoinverse calculated as

G� � GT�GGT�−1 (47)

Because GGT can become singular, it has to be replaced with the
regularized matrix GGT � ϵI. In [26,27], a redistribution scheme
is used to account for the actuator limits, in which all actuators
that violate their bounds in the pseudoinverse solution are saturated
and removed from the optimization. Then, the problem is resolved
with the remaining actuators as free variables. The procedure is
repeated until all components have reached their limits or until
the solution of the reduced least-squares problem satisfies the
constraints.

V. NDI Flight Control Design

Two inversion loops have been implemented using a time-scale
separated design [1]: an inner rate control loop and an outer
aerodynamic angle control loop. The control setup is shown in Fig. 2.
The controlled variables are the roll angle ϕ, angle of attack α, and
sideslip angle β.With this control setup,maneuvers can be performed
with zero sideslip. Furthermore, it can be used to operate at a constant
nonzero sideslip angle to compensate for the asymmetry in the case
of crosswind or in the case of an asymmetric failure. To avoid
unachievable commands due to the actuator constraints, first-order
lag prefilters are used for the command variables:

Hpf �
1

σs� 1

The prefilter time constants are chosen such that fast tracking is
achieved while avoiding command saturation as much as possible.
Only proportional control is used for feedback on the roll, pitch, and
yaw channels. The controller gains and prefilter time constants are
listed in Table 2. The inner- and outer-loop control laws are described
in the next two sections.

A. Body Angular Rate Inner Loop

In the inner loop, the system is influenced by commanding the
moments of the aircraft. The inner-loop quantities are the body
angular rates:

"
_p
_q
_r

#
� I−1

"
l
m
n

#
− I−1

"
p
q
r

#
× I

"
p
q
r

#
(48)

Rewriting the aircraft dynamics into the form of Eq. (35) gives

2
4 ClCm
Cn

3
5� I

1
2
ρV2S

2
4b 0 0

0 �c 0

0 0 b

3
5−18<

:
" νp
νq
νr

#
� I−1

0
@"pq

r

#
× I

"
p
q
r

#1A
9=
;

(49)
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B. Aerodynamic Angle Outer Loop

The inner-loop NDI, combined with the dynamics of the aircraft
are now considered as one system that can be influenced by
commanding the angular rates. The outer-loop quantities are the roll
angle ϕ, angle of attack α, and sideslip angle β. The dynamics are
expressed in terms of required body angular rates. For the roll angle,
this results in

_ϕ � � 1 sin ϕ tan θ cos ϕ tan θ �
"
p
q
r

#
(50)

� gϕ�x�ω (51)

For the angle of attack,

_α � d

dt

�
tan−1

w

u

�
� u _w − w _u

u2 �w2

� 1

u2 �w2
�u�Az � g cos θ cos ϕ� − w�Ax − g sin θ��

�
�

−uv
u2�w2 1 −vw

u2�w2

�264
p

q

r

3
75

� fα�x� � gα�x�ω (52)

and, for the sideslip angle, this gives

_β � d

dt

�
sin

v

V

�
� V _v − v _V
V

������������������
u2 �w2
p

� 1������������������
u2 �w2
p

�
−uv
V2
�Ax − g sin θ� �

�
1 −

v

V2

�

× �Ay � g sin ϕ cos θ� − vw
V2
�Az � g cos ϕ cos θ�

�

�
�

w�����������
u2�w2
p 0 −u�����������

u2�w2
p

�264
p

q

r

3
75

� fβ�x� � gβ�x�ω (53)

Combining Eqs. (50), (52), and (53) and rewriting into the form of
Eq. (35) gives

"
p
q
r

#
�

2
4gϕ�x�gα�x�
gβ�x�

3
5−10@" νϕνα

νβ

#
−

2
4 fϕ�x�fα�x�
fβ�x�

3
5
1
A (54)

VI. Identification of the F-16 Aerodynamic Model

In this section, methods from [11,13,14] are used to identify the F-
16 aerodynamic model using multivariate splines and ordinary
polynomials. The data used to identify the aerodynamic models are
generated with a high-fidelity wind-tunnel dataset of the F-16. This
wind-tunnel dataset should be seen as the “real” F-16 aerodynamics,
which are approximated with the multivariate spline and polynomial
models. The two identified models are used for the performance
assessment in Sec. VIII.B, in which the spline-based NDI controller
is compared with a polynomial-based NDI controller.
The required variables to be estimated are the moment coefficients

Cl, Cm, and Cn. In Sec. IV.B, the model is identified with simplex
spline structures and polynomial structures using a training dataset
consisting of 60,000 scattered points, which is generated with the
wind-tunnel model. In Sec. VI.C, the polynomial and spline model
are compared and validated using a validation dataset consisting of
10,000 scattered points.

A. Simulated Measurement Data

The NASAwind-tunnel data tables are used to generate simulated
measurement data. The training and validation datasets are obtained
by randomly generating scattered datapoints within the following
independent variable ranges:

Fig. 2 Control setup. An inner rate NDI loop combined with an aerodynamic angle outer NDI loop.

Table 2 Prefilter time constants and
controller gains

Time constants Controller gains

σϕ � 0.2 kϕ � 2 kp � 10
σα � 0.4 kα � 2 kq � 10
σβ � 0.2 kβ � 2 kr � 10
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−10 deg ≤ α ≤ 45 deg 50 m∕s ≤ V ≤ 300 m∕s

− 30 deg ≤ β ≤ 30 deg −21.5 deg ≤ δa ≤ 21.5 deg

− 90 deg ∕s ≤ p ≤ 90 deg ∕s − 25.0 deg ≤ δe ≤ 25.0 deg

− 90 deg ∕s ≤ q ≤ 90 deg ∕s − 30.0 deg ≤ δr ≤ 30.0 deg

− 90 deg ∕s ≤ r ≤ 90 deg ∕s 0 deg ≤ δlef ≤ 25.0 deg (55)

This results in a 10-dimensional dataset for the independent
variables, which is used to compute the dependent variables Cl, Cm,
andCn through the NASAwind-tunnel model. The complete dataset
may include physically infeasible data outside the operating region.
However, this will not affect the identified model within the valid
flight envelope.

B. Model Identification

The following model structures were assumed for the moment
coefficients:

Cm�α; β; ~q; δe; δlef� � Cm�α; β; δe� � Cmδlef
�α; β�δlef

� Cmq�α� ~q� Cmqδlef �α�δlef ~q (56)

Cl�α; β; ~p; ~r; δa; δr; δlef� � Cl�α; β�
� Clδlef �α; β�δlef � Clδa �α; β�δa � Clδr �α; β�δr
� Clr�α� ~r� Clrδlef �α�δlef ~r� Clp�α� ~p� Clpδlef �α�δlef ~p (57)

Cn�α; β; ~p; ~r; δa; δr; δlef� � Cn�α; β�
� Cnδlef �α; β�δlef � Cnδa �α; β�δa � Cnδr �α; β�δr
� Cnr�α� ~r� Cnrδlef �α�δlef ~r� Cnp�α� ~p� Cnpδlef �α�δlef ~p (58)

where

~p � pb∕2V; ~q � q �c∕2V; ~r � rb∕2V

Each modeling function in Eqs. (56–58) is estimated using simplex
splines and polynomials over the independent variable ranges in
Eq. (55). The objective is tomake the best possible polynomialmodel
such that a valid comparison between the polynomial-based NDI
controller and the SNDI controller can bemade. In [28], a polynomial
model is created froma slightly simplified version ([17] pp. 633–664)
of the original wind-tunnel database using a modeling technique
based on orthogonal modeling functions [29]. The regression struc-
tures of this polynomial model are used as initial model structures
to estimate the database, after which more regressors are added to

Table 3 Aerodynamic model structures for estimating the F-16 wind-tunnel database

Function Spline model structure Polynomial model structure

Cm�α; β; δe� S16�T 48� a0 � a1α� a2αβ2 � a3α2β� a4α2β4 � a5α3

� a6α5 � a7β2 � a8δe � a9αδe � a10αβ2δe
� a11α2β2δe � a12α3δe � a13α3β2δe � a14β2δe

� a15δ2e � a16αδ2e � a17α2δ2e � a18α3β2δ2e � a19β2δ2e � a20δ3e

Cmδlef
�α; β� S15�T 8� b0 � b1α� b2α2 � b3α2β� b4α3β� b5α4 � b6α4β

Cmq �α� S05�T 4� c0 � c1α� c2α2 � c3α3 � c4α4 � c5α5

Cmqδlef
�α� S03�T 4� d0 � d1α� d2α2 � d3α3

Cl�α; β� S15�T 32� e0β� e1αβ� e2α2β� e3α3β� e4α4β� e5β3

� e6αβ3 � e7α2β3 � e8α3β3 � e9α4β3

Clδlef
�α; β� S15�T 8� f0α

2 � f1α4 � f2α6 � f4β
Clδa �α; β� S14�T 8� g0 � g1α� g2β� g3α2 � g4αβ� g5α2β� g6α3
Clδr �α; β� S14�T 8� h0 � h1α� h2β� h3αβ� h4α2β� h5α3β� h6β2
Clr �α� S05�T 4� i0 � i1α� i2α2 � i3α3
Clrδlef

�α� S03�T 4� j0 � j1α� j2α2
Clp �α� S03�T 4� k0 � k1α� k2α2 � k3α3 � k4α4 � k5α5
Clpδlef

�α� S03�T 4� l0 � l1α� l2α2

Cn�α; β� S15�T 32� m0β�m1αβ�m2α
2β�m3α

3β�m4β
3

�m5αβ
3 �m6α

2β3 �m7α
2 �m8α

3

Cnδlef
�α; β� S14�T 8� n0α

2β� n1α4β� n2α6β
Cnδa �α; β� S13�T 8� o0 � o1α� o2β� o3αβ� o4α2β� o5α3β

� o6α2 � o7α3 � o8β3 � o9αβ3

Cnδr �α; β� S15�T 8� p0 � p1α� p2β� p3αβ� p4α
2β� p5α

2 � p6β
2

Cnr �α� S04�T 5� q0 � q1α� q2α2 � q3α3 � q4α4 � q5α5
Cnrδlef

�α� S03�T 4� r0 � r1α� r2α2 � r3α3
Cnp �α� S03�T 4� s0 � s1α� s2α2 � s3α3 � s4α4 � s5α5
Cnpδlef

�α� S01�T 2� t0α
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further improve the model. The resulting polynomial structures for
each modeling function are listed in the third column of Table 3.
For estimating the polynomial model, all observations are com-

bined in the observationmatrix Y, and the regressors are combined in
the regression matrix X resulting in the standard regression form
[Eq. (27)]. Using an ordinary least-squares estimator for the model
parameters gives

C � �XTpXp�−1XTpY (59)

with Xp the regression matrix for the polynomial model. For the
multivariate splinemodel, each subfunction is estimatedwith a spline
function. For the pitch moment coefficient Cm, this results in

s�α; β; ~q; δe; δlef� � s1�α; β; δe� � s2�α; β�δlef
� s3�α� ~q� s4�α�δlef ~q (60)

with

s1 ∈ S
r1
d1�T �; s2 ∈ S

r2
d2�T �; s3 ∈ S

r3
d3�T �; s4 ∈ S

r4
d4�T �

(61)

The selected spline spaces for eachmodeling function are listed in the
second column of Table 3. Using Eq. (26), themodel structure forCm
in Eq. (60) can be written in linear regression form as follows:

y�i� � �Bd11 �i�D1�i� Bd22 �i�D2�i�δlef�i� Bd33 �i�D3�i� ~q�i� Bd44 �i�D4�i�δlef�i� ~q�i� �� cT1 cT2 cT3 cT4 �T � X�i�c (62)

which, for all observations, results in the standard regression form
[Eq. (27)]. The B-coefficient vectors c1 − c4 for this regression
problem can be solved using the constrained least-squares estimator
from Eq. (30). To guarantee continuity between the simplices, a
global smoothness matrix needs to be defined to combine the
continuity conditions for all four spline regressors. The global
smoothness matrix in this case is [12]

Hg �

2
664
H1 0 0 0

0 H2 0 0

0 0 H3 0

0 0 0 H4

3
775 ∈ R

P
4

i�1 Ri ·Ei×
P

4

i�1 Ji·d̂i (63)

withH1 −H4 the smoothness matrices for the spline functions s1 to
s4, respectively. Substitution of Eq. (62) for Xc and Eq. (63) forH in
Eq. (29) gives the following estimator for the combined B
coefficients:

2
664
c1
c2
c3
c4

3
775 � C1X

TY (64)

withC1 as in Eq. (30). The spline model for the roll and yawmoment
coefficients Cl and Cn are estimated using the same approach.

C. Model Validation and Comparison

The polynomial and spline-based aerodynamic models are
compared with the original wind-tunnel model and validated against
the validation dataset. The results from the model validation are
listed in Table 4. Because the true model is known from the NASA
wind-tunnel data tables, a direct comparison can be made, which
is shown in Fig. 3. From this figure, the nonlinearities of the moment
coefficients can be observed. The spline model has a higher
approximation power and is better able to model these nonlinearities
at a global scale compared with the polynomial model. This can also
be seen from rms values of the model error. For example, the spline
model for Cm has a relative error rms of 2.72%, whereas the
polynomial model has a relative error rms of 11.15%.

VII. Spline Model-Based Control Allocation

This section contains the main contribution of the paper. It
discusses the process of control allocation for system models based
on multivariate splines that are not affine in the inputs. The use of
nonaffine aerodynamic spline models requires the augmentation of
the NDI structure with a separate control allocation module. This
augmented structurewas introduced in Sec. IV.All NDI flight control
laws can bewritten in terms of required forces ormoments, which can
be seen as a virtual input τ:

τreq � g−1�x��ν − f�x��

This required demand has to be translated into control surface
deflections based on the onboard spline model. The model for τ is
assumed to be a nonlinear function of the aircraft state and control
input and is approximated with a spline function:

τi � Φ�x; u� ≈ s�x;u� (65)

For example, the virtual controls for the control setup in Fig. 2 are the
moment coefficients for which the model has been estimated by
spline functions in the preceding section:

τ1 � Cl ≈ s�α; β; ~p; ~r; δa; δr; δlef�;
τ2 � Cm ≈ s�α; β; ~q; δe; δlef�;
τ3 � Cn ≈ s�α; β; ~p; ~r; δa; δr; δlef�

The control allocation problem for spline-based aerodynamicmodels
can be stated as follows: Given a virtual command τ, determine u
satisfying the actuator limits, such that τ � s�x; u�. This section
presents a control allocator that is formulated in terms of analytical
expressions for the Jacobian and Hessian of the spline model. This
allocator requires the analytical derivation of the gradient and
Hessian of a B-form simplex polynomial and is presented in
Sec. VII.A. In Secs. VII.B–VII.D, the analytical expressions are used
to formulate three control allocation strategies that can be specifically
applied to spline models: two linear strategies and one nonlinear
strategy. The advantages of having an analytical expression over

Table 4 Model validation performance parameters

Spline model Polynomial model

Performance parameter Error rms Relative error rms,a % Max error rms Error rms Relative error rms, % Max error rms

Cl validation 0.0029 6.86 0.0232 0.0085 19.95 0.0744
Cm validation 0.0042 2.72 0.0350 0.0172 11.15 0.1186
Cn validation 0.0043 7.83 0.0236 0.0097 17.50 0.0471

aThe relative error rms is defined as RMSrel�ϵ� � �RMS�ϵ��∕�RMS�Yυ��.
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a numerical approximation is that it is exact and computationally
more efficient to calculate. For example, the central difference
approximation of the second derivative ∂2f∕∂xi∂xj requires four
evaluations of function f comparedwith one evaluation of the second
derivative when having an analytical expression ([30] p. 884).

A. Gradient and Hessian of the B-Form Simplex Polynomial

In this section, two theorems are provided for the gradient and the
Hessian of a B-form simplex polynomial ptj�b�x�� with respect to
the spline state x. In the following sections, an expression for the

barycentric coordinate b�x� � �b0; b1; : : : ; bn� as an affine function
of the spline state x is required.
The barycentric coordinates (b1; : : : ; bn) given by Eq. (9) can be

expressed as an affine function of x and are derived as follows:

2
664
b1
b2
..
.

bn

3
775 � Λ�x − v0� � Λx − Λv0 � Λx� kn (66)

Fig. 3 Model comparison.
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with kn � −Λv0, and the component b0 as follows:

b0 � 1−
Xn
i�1

bi � 1− �1 1 : : : 1 �

2
666664

b1

b2

..

.

bn

3
777775

� −�1 1 : : : 1 �Λx� �1− �1 1 : : : 1 �kn�
� Λ0x� k0 (67)

Combining Eqs. (66) and (67) results in

2
6664
b0
b2
..
.

bn

3
7775 �

�
Λ0

Λ

�
x�

�
k0
kn

�
� Ax� k (68)

Equation (68) is used to derive the first and second partial derivatives
of a B-form basis polynomial Bdκ �b�x��. The first partial derivative is
given by the following lemma.
Lemma 1: Let the barycentric coordinate b�x� � �b0; b1; : : : ; bn�

of xwith respect to the n-simplex t be an affine function of x given by

b�x� � �a1 a2 · · · an �tj

2
664
x1
x2
..
.

xn

3
775� k � Atjx� k (69)

In that case, the partial derivative of a B-form basis polynomial
Bdκ �b�x�� with respect to xi is given by

∂Bdκ �b�x��
∂xi

� aTi ∇bBdκ �b�x�� (70)

with∇bBdκ �b�x�� the gradient of theB-form polynomial with respect
to the barycentric coordinate b:

∇bBdκ �b�x�� �
�

∂Bdκ �b�x��
∂b0

∂Bdκ �b�x��
∂b1

· · · ∂Bdκ �b�x��
∂bn

�
T

(71)

Proof: This proof uses the multivariable chain rule

∂Bdκ �b�x��
∂xi

� ∂Bdκ �b�x��
∂b0

∂b0�x�
∂xi

� ∂Bdκ �b�x��
∂b1

∂b1�x�
∂xi

� · · ·

� ∂Bdκ �b�x��
∂b0

∂bn�x�
∂xn

(72)

Equation (72) can be written in vector form:

∂Bdκ �b�x��
∂xi

�
�

∂b0�x�
∂xi

∂b1�x�
∂xi

· · · ∂bn�x�
∂xi

�

×
�

∂Bdκ �b�x��
∂b0

∂Bdκ �b�x��
∂b1

· · · ∂Bdκ �b�x��
∂bn

�
T

(73)

� aTi ∇bBdκ �b�x�� (74)

with ai the ith column of Atj . □

The second partial derivative of aB-form basis polynomial is given
by the second lemma.
Lemma 2: Let the barycentric coordinate b�x� � �b0; b1; : : : ; bn�

of xwith respect to the n-simplex t be an affine function of x given by

b�x� � �a1 a2 · · · an �tj

2
664
x1
x2
..
.

xn

3
775� k � Atjx� k (75)

In that case, the second partial derivative of a B-form basis
polynomial Bdκ �b�x�� with respect to xi, xj is given by

∂2Bdκ �b�x��
∂xi∂xj

� aTi ∇2
bB

d
κ �b�x��aj (76)

with∇2
bB

d
κ �b�x�� the Hessian of the B-form polynomial with respect

to the barycentric coordinate b:

∇2
bB

d
κ �b�x�� �

2
664

∂2Bdκ �b�x��
∂b2

0

· · · ∂2Bdκ �b�x��
∂b0∂bn

..

. . .
. ..

.

∂2Bdκ �b�x��
∂bn∂b0

· · · ∂2Bdκ �b�x��
∂b2n

3
775 (77)

Proof: It is shown that ∂
2Bdκ �b�x��
∂xi∂xj

� aTi ∇2
bB

d
κ �b�x��aj:

∂2Bdκ �b�x��
∂xi∂xj

� ∂
∂xj

∂Bdκ �b�x��
∂xi

� ∂
∂xj
aTi ∇bBdκ �b�x��

�by Lemma 1�

� aTi

2
66664

∂
∂xj

∂Bdκ �b�x��
∂b0

..

.

∂
∂xj

∂Bdκ �b�x��
∂bn

3
77775 � aTi

2
66664

∂2Bdκ �b�x��
∂b2

0

∂b0
∂xj
� · · · � ∂2Bdκ �b�x��

∂b0∂bn
∂bn
∂xj

..

.

∂2Bdκ �b�x��
∂bn∂b0

∂b0
∂xj
� · · · � ∂2Bdκ �b�x��

∂b2n
∂bn
∂xj

3
77775

�Chain rule�

� aTi

2
66664

∂2Bdκ �b�x��
∂b2

0

· · · ∂2Bdκ �b�x��
∂b0∂bn

..

. . .
. ..

.

∂2Bdκ �b�x��
∂bn∂b0

· · · ∂2Bdκ �b�x��
∂b2n

3
77775

2
66664

∂b0�x�
∂xj

..

.

∂bn�x�
∂xj

3
77775

� aTi ∇2
bB

d
κ �b�x��aj

with ai and aj the ith and jth column of Atj . □

The lemmas for the partial derivatives are now used to derive the
gradient and the Hessian of a B-form simplex polynomial ptj �b�x��.
The first theorem provides the gradient.
Theorem 1 (Gradient of a simplex polynomial in terms of

Cartesian coordinates): Let the barycentric coordinate b�x� �
�b0; b1; : : : ; bn� of x with respect to the n-simplex t be an affine
function of x given by

b�x� � �a1 a2 · · · an �tj

2
6664
x1
x2
..
.

xn

3
7775� k � Atjx� k (78)

In that case, the gradient of theB-form simplex polynomialptj�b�x��
of degree d with respect to the spline state x is given by

∇xptj�b�x�� � ATtj∇bBdtj �b�x��ctj (79)

with∇bBdtj�b�x�� thevector ofB-form polynomial gradients givenby

∇bBdtj �b�x��≕ �∇bB
d
d;0;··;0�b�x�� ∇bBdd−1;1;··;0�b�x�� ··· ∇bBd0;··;0;d�b�x���

��∇bBdκ �b�x���jκ�dj∈Rn�1×d̂ (80)

and with ctj the vector of B coefficients given by Eq. (18):
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ctj :� �ctjκ �jκj�d ∈ Rd̂×1

Proof: This proof starts by showing that ∂p
tj �b�x��
∂xi

� aTi ∇bBdctj :

∂ptj�b�x��
∂xi

� ∂
∂xi

X
jκj�d

c
tj
κ Bdκ �b�x�� �

X
jκj�d

c
tj
κ

∂
∂xi

Bdκ �b�x��

�
X
jκj�d

c
tj
κ aTi ∇bBdκ �b�x�� �by Lemma 1�

� aTi
X
jκj�d

c
tj
κ ∇bBdκ �b�x�� (81)

Using the definitions in Eqs. (80) and (18), Eq. (81) can be written in
vector form:

∂ptj �b�x��
∂xi

� aTi ∇bBdtj �b�x��ctj (82)

Combining the partial derivatives for all xi gives

∇xptj�b�x�� �

2
66666664

∂ptj �b�x��
∂x1

∂ptj �b�x��
∂x2

..

.

∂ptj �b�x��
∂xn

3
77777775
�

2
6666664

aT1

aT2

..

.

aTn

3
7777775
∇bBdtj �b�x��ctj

� ATtj∇bBdtj�b�x��ctj (83)

which proves the theorem. □

The following theorem provides the Hessian of a B-form simplex
polynomial ptj�b�x��.
Theorem 2 (Hessian of a B-form simplex polynomial in terms of

Cartesian coordinates): Let the barycentric coordinate b�x� �
�b0; b1; : : : ; bn� of x with respect to the n-simplex t be an affine
function of x given by

b�x� � �a1 a2 · · · an �tj

2
6664
x1
x2
..
.

xn

3
7775� k � Atjx� k (84)

In that case, the Hessian of theB-form simplex polynomial ptj �b�x��
of degree d with respect to the spline state x is given by

∇2
xp

tj �b�x�� � ATtj
�X
jκj�d

c
tj
κ ∇2

bB
d
κ �b�x��

�
Atj � ATtjΓtjAtj (85)

Proof: This proof starts by showing that ∂2ptj �b�x��
∂xi∂xj

�

aTi

�P
jκj�dc

tj
κ ∇2

bB
d
κ �b�x��

�
aj:

∂2ptj�b�x��
∂xi∂xj

� ∂2

∂xi∂xj

X
jκj�d

c
tj
κ Bdκ �b�x�� �

X
jκj�d

c
tj
κ

∂2

∂xi∂xj
Bdκ �b�x��

�
X
jκj�d

c
tj
κ aTi ∇2

bB
d
κ �b�x��aj �by Lemma 2�

� aTi
�X
jκj�d

c
tj
κ ∇2

bB
d
κ �b�x��

�
aj � aTi Γtjaj

Combining the second partial derivatives for all xi, xj gives

∇2
xp

tj�b�x�� �

2
66664

∂2ptj �b�x��
∂x2

1

· · · ∂2ptj �b�x��
∂x1∂xn

..

. . .
. ..

.

∂2ptj �b�x��
∂xn∂x1

· · · ∂2ptj �b�x��
∂x2n

3
77775

�

2
66664
aT1Γtja1 · · · aT1Γtjan

..

. . .
. ..

.

aTnΓtja1 · · · aTnΓtjan

3
77775 (86)

�

2
64
aT1
..
.

aTn

3
75Γtj �a1 · · · an � � ATtjΓtjAtj (87)

which proves the theorem. □

B. Strategy 1: Linear Control Allocation

With this strategy, the control allocation problem is solved for a
linear approximation of the onboard spline model. Consider the
spline structure given by Eq. (3):

s�x�� δ1p
t1�b�x���δ2p

t2�b�x��� · · · �δjptj�b�x��; 1≤ j≤ J

with δj � 1 if x ∈ tj and δj � 0 if x ∈= tj. Suppose that the current
state x0 is located within simplex tj. Then, by linearizing the local
polynomial ptj �x� around the current state, the linearized model
becomes the global representation for the original spline model. At
the current state x0, each spline function can be represented by a
single simplex polynomial:

τi � ptj �x�; x0 ∈ tj (88)

Consider the affine formulation of the barycentric coordinates
b�x� � �b0; b1; : : : ; bn� given by Eq. (68):

b�x� � Atjx� k (89)

Let the spline state x consist of l aircraft states andm control inputs:

x � � x1 x2 : : : xl u1 u2 : : : um �T � � xTa uT �T
(90)

Because the Cartesian to barycentric coordinate system trans-
formation is a linear one-to-one transformation, the barycentric
coordinates b�x� � �b0; b1; : : : ; bn� can be parameterized as an
affine function of the control input u for a fixed aircraft state xa:

b�u� � �Axa;tj Au;tj �
�
xa

u

�
� k

� Au;tju� Axa;tjxa � k

� Au;tju� ~k (91)

with Axa;tj ∈ R�n�1�×l and Au;tj ∈ R�n�1�×m the partitions of Atj .
Using this parameterization, the simplex polynomial can be
expressed as a function only dependent on the control input u:ptj �u�.
By Theorem 1, the gradient of the simplex polynomial with respect to
the control input is given by

∇uptj �u� � ATu;tj∇bBdtj�u�ctj (92)

The linearized model around the current control input u0 for the
complete effector model becomes
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2
64
τ1
..
.

τi

3
75 �

2
64
p1�u0�

..

.

pi�u0�

3
75�

2
64
∇Tup1�u0�

..

.

∇Tupi�u0�

3
75
2
64
Δu1
..
.

Δum

3
75 (93)

which can be written in vector form:

τ � p�u0� �GΔu (94)

The linearized model is directly related to the aircraft control input
and any linear control allocation method can now be applied, such as
the redistributed pseudoinverse solution [26,27] or constrained linear
programming techniques [31]. The approach elaborated here is based
on the pseudoinverse solution.Using the linearizedmodel in Eq. (94),
the error between the model and required output can be written as

e � p�u0� �GΔu − τreq � GΔu − ~τreq (95)

with

~τreq � τreq − p�u0� (96)

The controlminimization problem [Eq. (43)] can nowbe formulated as

min
Δu≤Δu≤Δ �u

J � kΔuk subject to GΔu � ~τreq (97)

By dropping the actuator constraints, the incremental control input can
be calculated using the pseudoinverse solution in Eq. (46):

Δu � G� ~τreq (98)

Actuator constraints can then be taken into account by applying the
redistribution scheme from [26,27]. By linearizing the spline model
and computing the optimal solution at each time step, the new control
input vector becomes

u�t� 1� � u�t� � Δu (99)

C. Strategy 2: Successive Linear Control Allocation

The approach discussed in the previous section may produce
inaccurate solutions in the case of highly nonlinear effector models.
In this case, the linearized model might be inaccurate, resulting in
large allocation errors. In this section, a new successive linear
approach is presented to account for the nonlinearities in which the
control allocation problem is solved for a sequence of linear
approximations of the onboard spline model. In the preceding
section, the spline model was linearized around current input u�t0�,
for which the pseudoinverse solution is applied. Solutions with
better accuracy can be obtained by successively calculating the
pseudoinverse solution for several initial conditions in the feasible set
for u and selecting the one that yields the lowest value for the control
allocation error. This approach consists of four steps: First, define a
feasible subset Ω for u:

Ω � fu ∈ Rmju ≤ u ≤ �ug ⊂ Rm (100)

where u and �u are lower and upper bounds. Second, define a tuple
consisting of k initial conditions in the feasible subset:

V1 :� �u01 ; u02 ; : : : ; u0k � ∈ Ω (101)

Third, linearize the spline model around each initial condition
�x0; u0k� to obtain the formulation in Eq. (94) and calculate the
incremental control inputΔu for all trials k throughEqs. (98) and (99)
to obtain a set of optimal solutions:

V2 � �u01 � Δu1; u02 �Δu2; : : : ; u0k � Δuk� � �u	1 ; u	2 ; : : : ; u	k�
(102)

Fourth, calculate the control allocation error based on the onboard
spline model:

V3��kΦ�x0;u	1�−τreqk;kΦ�x0;u	2�−τreqk; : : : ;kΦ�x0;u	k�−τreqk�
(103)

Select the input that yields the lowest value for the control allocation
error. The solution is iterated by repeating these steps at each sample
instant. This approach requires a definition of the feasible set Ω and
the number of trials k. The upper and lower bounds in Eq. (100)
should not only be determined by the actuator position constraints,
but should rather be given by small deviations around the current
control signal:

u�t� 1� � maxfu�t� − ε; uming (104)

�u�t� 1� � minfu�t� � ε; umaxg (105)

The deviation ε should be determined based on the knowledge of the
control actuators. For example, for themodel given by Eq. (2), a good
choice would be ε � λ _ulim, such that maximum deflection can be
achieved within the subset Ω.

D. Strategy 3: Nonlinear Control Allocation

In this section, a nonlinear solver for the control allocation problem
is presented that minimizes the sum of square errors between the
onboard aerodynamic spline model and the required demand:

min
u≤u≤ �u

� ks�u� − τreqk22 �
XN
i�1
�si�u� − τreqi�2 �

XN
i�1

ei�u�2 (106)

This is a constrained nonlinear optimization problem that usually
requires a large number of iterations and function evaluations to
solve. A common approach to avoid complex programming routines
is to drop the actuator constraints and to linearize the model at each
sample instant, as was shown in the preceding sections. The main
disadvantage of this approach is that it results in large allocation
errors in case of significant nonlinear models. In that case, nonlinear
solvers can provide more flexibility in handling nonlinearities. The
solver suggested here emphasizes a combination of both: an efficient
nonlinear solver that can be implemented analytically by matrix
computations and which requires a small number of iterations to
converge to a solution. With the analytical expressions for the
gradient and Hessian derived in the preceding section, any second-
order optimization method, such as a sequential quadratic program-
ming approach [32,33], can be applied to solve the control allocation
problem. The solver presented here is based on the Levenberg–
Marquardt algorithm [34]. Consider the spline model representation
given by Eq. (3):

s�x�� δ1p
t1�b�x���δ2p

t2�b�x��� · · ·�δjptj �b�x���
XJ
j�1

δjp
tj �x�

(107)

with b�x� the barycentric coordinate of x with respect to the n-
simplex tj. Let x consist of l aircraft states and m control inputs:

x � � x1 x2 : : : xl u1 u2 : : : um �T � � xTa uT �T

Consider the parameterized barycentric coordinates as a function ofu
given by Eq. (91):

b�u� � Au;tju� ~k

with Au;tj ∈ R�n�1�×m. Using this parameterization, the spline
function can be expressed as a function only dependent on the control
input u:

TOL ETAL. 1851

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n 
D

ec
em

be
r 

10
, 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

00
65

 



si�u� �
XJ
j�1

δjp
tj�u� (108)

By Theorem 1, the gradient of the spline function with respect to the
control input is given by

∇usi�u� �
XJ
j�1

δjA
T
u;tj∇bB

d
tj �u�ctj (109)

and by Theorem 2, the Hessian is given by

∇2
usi�u� �

XJ
j�1

δjA
T
u;tjΓtjAu;tj (110)

with Γtj as given in Eq. (85). Let the Jocabian of the complete spline
model s�u� be defined as

∇s�u� �

2
664

∂s1�u�
∂u1

· · · ∂s1�u�
∂um

..

. . .
. ..

.

∂sN�u�
∂u1

· · · ∂sN�u�
∂um

3
775 �

2
664
∇Tus1�u�

..

.

∇TusN�u�

3
775 (111)

Then, the gradient and Hessian of the objective function J are given
by

∇J �u� � 2∇Tus�u��s�u� − τreq� (112)

∇2J �u� � 2∇Ts�u�∇s�u� � 2
XN
i�1

∇2
usi�u��si�u� − τreqi � (113)

Consider the second-order approximation of the least-squares
objective in Eq. (106) at u�t0� � u0:

J �u�≍J �u0� � ∇TuJ �u0��u − u0�

� 1

2
�u − u0�T∇2

uJ �u��u − u0� � �J �u� (114)

A good estimate for the solution of the unconstrained optimization
problem is obtained by setting ∂ �J ∕∂u � 0 and solving for u. This
results in

u	 � u0 − �∇2J �u0��−1∇J �u� (115)

To improve the result, the procedure can be repeated to obtain
Newton’s algorithm:

uk�1 � uk − �∇2J �uk��−1∇J �uk� � uk � d�n�k (116)

withd�n�k theNewton search direction. A property of the least-squares
objective function in Eq. (106) is that, if the error is small (i.e., uk is
close to u	), the Hessian of the objective function can be
approximated by

∇2J �u� ≈ 2∇Tus�u�∇s�u� � �∇2
uJ �u� (117)

Substituting Eq. (117) in Eq. (116) results in the Gauss–Newton
algorithm:

uk�1 � uk − � �∇2J �uk��−1∇J �uk� � uk � d�gn�k (118)

Although an analytical expression for the Hessian of the spline
function ∇2

usi�u� is available, using the approximation in Eq. (117)
avoids its evaluation, making the solver more efficient. Furthermore,
the Gauss–Newton Hessian matrix �∇2

uJ �u� is always positive
definite and therefore guarantees that the search direction d�gn�k is a

decent direction. The advantage of Gauss–Newton’s algorithm is that
it shows good local convergence (i.e., when the initial solution u0 is
chosen close to the optimal solution u	). This is often the case for the
control allocation problem. For example, suppose that the global
optimal solution u	�t0� at time t � t0 is found. Then, when using a
small step sizeΔt, it is likely that the optimal solution u	�t0 � Δt� at
time t0 � Δt is located in the neighborhood¶ N of u�t0�. When this
assumption is valid, the optimal solution at t0 � Δt can be found
quickly using the Gauss–Newton algorithm with u	�t0� as initial
feasible solution.However, theGauss–Newton algorithm shows poor
convergence when the initial solution u0 is far from u	 and might
diverge. Furthermore, the algorithm may not be defined when the
Hessian is singular. The Levenberg–Marquardt algorithm [34]
overcomes this problem and increases the robustness by adaptively
varying between the Gauss–Newton search direction and the steepest
descent search direction:

uk�1 � uk − � �∇2J �uk� � ηkI�−1∇J �uk� � uk � d�lm�k (119)

where ηk controls both the magnitude and direction of dk. When ηk
is zero, the search direction d�lm�k is identical to the Gauss–Newton
search direction d�gn�k . If, on the other hand, ηk goes to infinity, the
search direction tends toward the steepest descent direction, with
magnitude tending to zero: ηk → ∞, d�lm�k → −∇J �uk�∕ηk. The
steepest decent direction shows fast initial progress when the initial
solution is far from the optimum. So, in case of divergence, ηkmust be
increased by a factor υ such that

J �uk�1� < J �uk� (120)

In [34], it is proven that a sufficient large ηk exists, such that Eq. (120)
holds. The Levenberg–Marquardt algorithm does not take the actua-
tor limits into account. A frequently used approach to handle actuator
limits is to add a barrier function to the objective function [35].
Barrier functions keep the iterates away from the boundaries. How-
ever, in the case of actuator saturation, the optimal solution to the
control allocation problem is often on the boundaries, and thus the use
of barrier functions can result in less accurate solutions. For this
reason, the limits are incorporated by clipping the components of the
control vector that exceed their limits at their allowable values.
The nonlinear control allocation algorithm can be summarized as

follows: Let uk � u�t0�, ηk � η0, υ > 1:
1) Try an update: utry � uk − � �∇2J �uk� � ηkI�−1∇J �uk�.
2) Saturate controls: utry � minfmaxfutry; ug; �ug.
3) Evaluate the objective: J �utry� � ks�utry� − τreqk22.
4) Update solution:

a) If J �utry� <� J �uk�, accept solution: uk�1 � utry,
ηk�1 � ηk∕υ.

b) If J �utry� > J �uk�, retract the update: uk�1 � uk,
ηk�1 � ηkυ.
Choosing a small initial value for η0 (e.g., 0.005) leads to fast

convergence when the initial solution u0 is close to the optimal
solutionu	. This is a reasonable assumption, as described earlier. The
choice of υ is arbitrary, but a value of 10 has been found to be a good
choice.

VIII. Evaluation of the Spline-Based NDI Controller

In this section, the spline-based NDI controller is evaluated. In
Sec. VIII.A, the control allocation strategies are evaluated, and in
Sec. VIII.B, a performance assessment is made by comparing the
SNDI controller with a polynomial-based NDI controller.

A. Evaluation of the Control Allocation Strategies

In this section, the three control allocation strategies are applied to
the F-16 simulation model. The allocation of the control input for a
required demand Clreq , Cmreq

, and Clreq is based on the spline models

¶The neighborhood of point u�t0� could be defined as an open ball with
center u�t0� and a small radius ϵ.
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identified in Sec. VI. Consider the spline model structures for the
moment coefficients given by Eqs. (56–58):

Cl�α; β; ~p; ~r; δa; δr; δlef� � s11�α; β� � s12�α; β�δlef � s13�α; β�δa
� s14�α; β�δr � s15�α� ~r� s16�α�δlef ~r� s17�α� ~p� s18�α�δlef ~p

(121)

Cm�α; β; ~q; δe; δlef� � s21�α; β; δe� � s22�α; β�δlef
� s23 ~q� s24�α�δlef ~q (122)

Cn�α; β; ~p; ~r; δa; δr; δlef� � s31�α; β� � s32�α; β�δlef � s33�α; β�δa
� s34�α; β�δr � s35�α� ~r� s36�α�δlef ~r� s37�α� ~p� s38�α�δlef ~p

(123)

The leading-edge flap δlef is scheduled as a function of the angle of
attack to optimize performance. At each sample instant, the required
moment coefficientsClreq ,Cmreq

, andCnreq have to be translated into an
actuator setting δa, δe, and δr, such that

~Clreq � s13�α; β�δa � s14�α; β�δr (124)

~Cmreq
� s21�α; β; δe� (125)

~Cnreq � s33�α; β�δa � s34�α; β�δr (126)

with

~Clreq � Clreq − �s11�α; β� � s12�α; β�δlef � s15�α� ~r

� s16�α�δlef ~r� s17�α� ~p� s18�α�δlef ~p� (127)

~Cmreq
� Cmreq

− �s22�α; β�δlef � s23�α� ~q� s24�α�δlef ~q� (128)

~Cnreq � Cnreq − �s31�α; β� � s32�α; β�δlef � s35�α� ~r

� s36�α�δlef ~r� s37�α� ~p� s38�α�δlef ~p� (129)

The F-16 lateral dynamics are affine in the control input, and so are
the spline approximations for Cl and Cn. Therefore, the control
allocation strategies are evaluated by performing a number of high-
amplitude angle-of-attack maneuvers using the control structure in
Fig. 2. Feedback on the roll and yaw channel is only used for
stabilization. The angle-of-attack response for the three allocation
strategies is shown in Figs. 4–6. The plots contain three simulations
starting at different trim conditions for the angles of attack α � 5, 15,
and 25 deg. In addition, Fig. 7 contains a subplot with the number of
iterations performed by the nonlinear control allocation algorithm at
each time step. To reduce the computational load, the maximum
number of iterations is set to 10. For the successive linearmethod, five
initial conditions uniformly distributed in the feasible set for δe are
used. The approach described in Sec. VII.B is used for defining the
the feasible set. The plot shows the angle-of-attack response for the
three strategies starting at α � 15 deg. The performance is evaluated
by comparing the allocation error, which is the error between the
required moment delivered by the NDI controller and the actual
moment delivered the control allocator:

ΔCm�t� � Cmreq
�t� − Cm�t� (130)

The rms values and maximum error for the three strategies are listed
in Table 5, and the MATLAB execution times are listed in Table 6.
Atmoderate angles of attack, the performance of the linear strategy

is comparable to the successive linear and nonlinear strategies.
At higher angles of attack, the nonlinearities cause large allocation
errors, which in turn results in a poor tracking performance and
possibly unstable system (see the lower left plot of Fig. 4).
Maneuverability at higher angles of attack can be improved by using
the successive linear or the nonlinear control allocation method.
The nonlinear allocation strategy is the benchmark algorithm for

coping with nonlinear aerodynamics because it results in significant
lower allocation errors in the high-angle-of-attack regions. However,
the nonlinear optimization techniques may be too costly computa-
tionally for online applications. Although the average computational
load for the nonlinear strategy is lower than for the successive
strategy, during maneuvering, the number of required iterations for
the algorithm to converge increases, as can be seen from Fig. 7b. In

Fig. 4 SNDI with linear control allocation.
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turn, this results in high maximum computation loads, as can be seen
from Table 6, whereas the computational load of the successive
strategy is fixed by design (i.e., the selection of the trials k). The
successive linear strategy is a performance optimization with respect

to complexity and computational efficiency; full envelope tracking
can be achievedwhile nonlinear optimization is avoided. However, it
requires careful selection of the initial conditions and number of
trials.

Table 5 Performance assessment of the control allocation techniques for SNDI

Condition α0 � 5 deg α0 � 15 deg α0 � 25 deg

Parameter RMSΔCma MaxjΔCmj RMSΔCm MaxjΔCmj RMSΔCm MaxjΔCmj
Linear 0.0222 0.1667 0.2453 1.0451 5.4956 13.4828
Successive linear 0.0225 0.1669 0.2666 1.0452 1.1355 3.9967
Nonlinear 0.0223 0.1671 0.2125 1.0466 1.0957 3.9160

aThe inversion error is defined as ΔCm�t� � Cmreq
�t� − Cm�t�.

Fig. 5 SNDI with successive linear control allocation.

Fig. 6 SNDI with nonlinear control allocation.
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B. Performance Assessment

In this section, the spline-based NDI controller is evaluated. To
evaluate the controller properly, its performance is compared with a
polynomial-based NDI controller using the models identified in
Sec. VI. To make a fair comparison, nonlinear control allocation is
applied for both controllers. The control effort and required demand
for the roll, pitch, and yaw channels are combined in one least-
squares objective:

min
δe;δa;δr

J �

������
2
4 Cl�α; β; ~p; ~r; δa; δr; δlef� − Clreq

Cm�α; β; ~q; δe; δlef� − Cmreq

Cn�α; β; ~p; ~r; δa; δr; δlef� − Cnreq

3
5
������ (131)

for which the nonlinear control allocation algorithm is applied.
The performance assessment is conducted with two maneuvers,

which cover a large part of the flight envelope:
1) Maneuver 1: Roll command (ϕcom � 40 deg) and angle-of-

attack command (αcom � 15 deg) performed simultaneously with
constant sideslip command βcom � 5 deg (see Fig. 8 and Table 7).

2) Maneuver 2: Roll command (ϕcom � 15 deg) and high-angle-
of-attack command (αcom � 40 deg) with zero sideslip. The outer-
loop controller gains are decreased to kϕ � 1, kα � 1.5, and kβ � 1
(Fig. 9 and Table 8).
Each figure shows a comparison between the tracking response,

the control inputs, the control allocation error given by Eq. (130), and
the model error between the true and estimated moment coefficients:

ξC�t� � C�t� − Ĉ�t� (132)

An assessment of the performance is made based on the rms values of
the model errors and control allocation errors, which are listed in the
corresponding tables. The flight trajectories of the four maneuvers
are shown in Fig. 10.
Maneuver 1 is conducted in the low-angle-of-attack region, which

contains moderate nonlinear aerodynamics. The spline model is
better able to accurately model these nonlinearities as compared with
the polynomial model, resulting in lower model errors and, in turn,

Table 6 MATLAB execution times

Condition α0 � 5 deg α0 � 15 deg α0 � 25 deg

Average time, ms Maximum time, ms Average time, ms Maximum time, ms Average time, ms Maximum time, ms

Linear 14.5 17.4 14.8 18.3 14.7 17.1
Successive linear 32.0 34.3 32.9 35.1 32.6 40.1
Nonlinear 17.6 80.1 19.4 80.0 22.3 94.9

Fig. 7 SNDI with nonlinear control allocation.
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Fig. 8 Results maneuver 1: Roll command (ϕcom � 40 deg) and angle-of-attack (αcom � 15 deg) command performed simultaneously with constant
sideslip command βcom � 5 deg.

Table 7 Performance parameters maneuver 1

Performance parameter RMSξCl RMSξCm RMSξCn RMSΔCl RMSΔCm RMSΔCn
Spline 0.0005 0.0025 0.005 0.0055 0.0748 0.0102
Polynomial 0.0021 0.0088 0.0028 0.0115 0.1135 0.0106
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Fig. 9 Results maneuver 2: Roll command (ϕcom � 15 deg) and high-angle-of-attack command (αcom � 40 deg) with zero sideslip. Outer-loop
controller gains are decreased to kϕ � 1, kα � 1.5, kβ � 1.

Table 8 Performance parameters maneuver 2

Performance parameter RMSξCl RMSξCm RMSξCn RMSΔCl RMSΔCm RMSΔCn
Spline 0.0020 0.0047 0.0027 0.0718 1.1883 0.1181
Polynomial 0.0028 0.0212 0.0018 0.0061 4.7248 0.0130
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lower control allocation errors. Oscillations can be observed in the
sideslip angle response, which are caused by the actuator limits and
coupling effect between the control axis due to the allocation errors.
Maneuver 2 is performed in the high-angle-of-attack region,which

is very nonlinear compared with the low-angle-of-attack region. In
this region, the controls saturate quickly and, therefore, the controller
gains are decreased. Furthermore, by decreasing the gains, the effect
of the model error on the controller performance can be better
observed. Actuator saturation might actually mask this effect. In this
maneuver, a large part of the angle-of-attack region is traversed. In
this region, the nonlinearities have increased to the point that the
polynomial-based controller is unable to track the commanded angle
of attack, whereas the spline-based controller still shows adequate
tracking performance. From Fig. 9, it can be observed that the
polynomial-based NDI controller is better able to stabilize the roll
and sideslip angle compared with the spline-based NDI controller.
The actuators for the rudder and aileron of the SNDI controller
saturate more quickly, resulting in larger control allocation errors
and, in turn, large oscillations for the roll and sideslip angle. It must
be noted, however, that the polynomial-based NDI controller fails
to track the angle-of-attack reference of 40 deg and, as a result, is
operating at much lower angle of attack than the SNDI controller
(i.e., 15 vs 40 deg for the SNDI controller). In fact, the significant
difference between the trajectories for maneuver 2 in Fig. 10 clearly
illustrates the capability of the SNDI-controlled F-16 to outmaneuver
the polynomial NDI-controlled F-16.
From these results, it can be concluded that, when operating in

the linear part of the flight envelope, the use of SNDI does not provide
a significant increase in tracking performance compared with
polynomial NDI. However, in the operating region with significant
nonlinear aerodynamics, SNDI provides a significant increase
in controller performance, resulting in improved maneuvering
capabilities.

IX. Conclusions

High-performance flight control systems based on the NDI
principle require highly accurate models of aircraft aerodynamics.
In this paper, a new nonlinear control method, indicated as SNDI,
is presented that combines NDIwithmultivariate splinemodel-based

control allocation. The goal of SNDI is to improve the tracking
performance of current NDI-based flight controllers by improv-
ing the accuracy of their onboard aerodynamic models. This is
achieved by replacing current aerodynamic model implementations
with multivariate simplex splines, a powerful type of function
approximator.
Three new CA strategies are presented for the simplex spline

approximators: a linear, nonlinear, and successive linear strategy.
The linear CA strategy is computationally efficient, but can result
in significant allocation errors in nonlinear regions of the flight
envelope. The nonlinear approach produces the smallest allocation
errors at the cost of having to solve a computationally expensive
nonlinear optimization problem. The successive linear approach aims
to strike a balance between computational efficiency and allocation
error; it calculates the control input at a number of local linearization
points and then selects the input resulting in the smallest allocation
error. The choice of CA strategy depends on the available compu-
tational resources. On platforms with limited resources, the succes-
sive linear approach should be used. When sufficient computational
resources are available, the nonlinear strategy is the preferred
strategy.
The SNDI method is demonstrated with a number of simulated

maneuvers using a high-fidelity F-16 simulation. The tracking per-
formance of SNDI is compared directly with NDI based on ordinary
polynomial models in two high-amplitude maneuvers flown with the
F-16 simulation. The results show that SNDI provides a significantly
improved tracking performance, especially in nonlinear regions of
the flight envelope, such as the high-angle-of-attack and high-angle-
of-sideslip regions.

Appendix A: Tutorial on Data Approximation
with Multivariate Simplex Splines

In this Appendix, a simple seven-step tutorial example is
presented, using multivariate simplex splines to approximate a two-
dimensional scattered (i.e., nongridded) dataset. This dataset consists
of the measurement locations x, which are chosen arbitrarily as
follows (see also Fig. A1):

Fig. 10 Flight trajectories of the four maneuvers.
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x � �x1; x2�

�
�

0 0.3 0.5 0.6 1.0 1.0 0 0.2 0.6 0.8

1.0 0.5 0.9 0.8 0 1.0 0 0.1 0.2 0.7

�T

This dataset can be seen as independentmeasurementsmade on some
aircraft states. The dependentmeasurement values are generatedwith
a sine function as follows:

y�x� � sin�x1 � x2� � � 0.841 0.717 0.985 0.985 0.841 0.909 0 0.296 0.717 0.997 �T

which can be seen as the values calculated for a force or moment
coefficient. The aim is to approximate y�x� with a bivariate simplex
spline function of degree two and continuity order one, that is, the
spline function s�x� ∈ S1

2�T � that minimizes ks�x� − y�x�k on the
triangulation T .
1) Step 1: Define the triangulation. In this case, a Delaunay

triangulation is created of the convex hull of x, resulting in a
triangulation consisting of two triangles t1 � hv0; v1; v3i and t2 �
hv1; v2; v3i (see Fig. A1).
2) Step 2: Explicitly define the splinemodel structure in the formof

Eq. (3). In this case, the spline model structure is as follows:

s�x� � δ1�x�pt1�x� � δ2�x�pt2�x�
� δ1�x�B2

t1�x�ct1 � δ2�x�B2
t2 �x�ct2 (A1)

The structure of the individual B-form polynomials B2
tj�x�ctj in

Eq. (A1) is found by first determining the set of multi-indices κ using
Eq. (15) and the fact that d � jκj � 2:

κ ∈ f�2; 0; 0�; �1; 1; 0�; �1; 0; 1�; �0; 2; 0�; �0; 1; 1�; �0; 0; 2�g

Clearly, there are six (i.e., d̂ � 6) valid multi-indices, resulting in B-
form polynomials consisting of six individual basis functions
B2
κ�b�x��. Using this result with Eq. (17), the vectors of per-triangle

basis polynomialsB2�x� for both triangles can then be constructed as
follows:

B2
tj �x� � �B2

2;0;0�b�x�� B2
1;1;0�b�x�� B2

1;0;1�b�x�� B2
0;2;0�b�x�� B2

0;1;1�b�x�� B2
0;0;2�b�x�� �; j � 1; 2

� �b20 2b0b1 2b0b2 b21 2b1b2 b22 �; j � 1; 2

The corresponding global vector of basis functions is

B2�x� � �B2
t1�x� B2

t2�x� �

The vectors of per-triangle B-coefficients ctj then are

ct1 � � ct1200 ct1110 ct1101 ct1020 ct1011 ct1002 �T

ct2 � � ct2200 ct2110 ct2101 ct2020 ct2011 ct2002 �T

and the corresponding global B-coefficient vector is

c � � cT cT �T

3) Step 3: Assign measurement data to simplices and calculate
respective barycentric coordinates. The following data assignment is
made:

xt1 � x�i� ∈ t1: i � 1; 2; 3; 4;

xt2 � x�i� ∈ t2: i � 5; 6; 7; 8; 9; 10

that is, t1 and t2 contain, respectively, four and six data points. Note
that, although data points x�6� and x�7� located, respectively, at
vertices v1 and v3 are assigned to t2, they could also have been
assigned to t1 or to both t1 and t2. Using Eqs. (9) and (10) to calculate
the barycentric coordinates of xt1 and xt2 results in

b�xt1� �

2
664
1.0 0 0

0.2 0.3 0.5

0.4 0.5 0.1

0.2 0.6 0.2

3
775; b�xt2 � �

2
6666664

0 1.0 0

1.0 0 0

0 0 1.0

0.1 0.1 0.8

0.2 0.4 0.4

0.7 0.1 0.2

3
7777775

Note that MATLAB provides the built-in function tsearchn, which
calculates both data membership and barycentric coordinates of a
given dataset and triangulation.

Fig. A1 Triangulation consisting of two triangles with a two-dimensional scattered dataset (left) and the B-coefficient net (right).

TOL ETAL. 1859

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n 
D

ec
em

be
r 

10
, 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

00
65

 



4) Step 4: Formulate theB-form regressionmatrix. Using Eq. (26),
the following regression model structure is found for a single
observation i:

y�i� � B2�i�D�i�c� ϵ�i� � X�i�c
for example, for the third (i � 3) observation x�3� � �0.5; 0.9� [and
b�x�3�� � �0.4; 0.5; 0.1�], the regression model is

0.985 � �B2�3� B2�3� �D�3�c� ϵ�3�

� �B2�3� B2�3� �
�
I6×6 06×6

06×6 06×6

�
c� ϵ�3�

� �b20 2b0b1 2b0b2 b21 2b1b2 b22 01×6 �c
� � 0.16 0.4 0.08 0.25 0.1 0.01 01×6 �c� ϵ�3�

The complete regressionmatrixX for the given set of 10 observations
is

X �

2
666666666666664

1.0 0 0 0 0 0 0 0 0 0 0 0

0.04 0.12 0.2 0.09 0.3 0.25 0 0 0 0 0 0

0.16 0.4 0.08 0.25 0.1 0.01 0 0 0 0 0 0

0.04 0.24 0.08 0.36 0.24 0.04 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1.0 0 0

0 0 0 0 0 0 1.0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1.0

0 0 0 0 0 0 0.01 0.02 0.16 0.01 0.16 0.64

0 0 0 0 0 0 0.04 0.16 0.16 0.16 0.32 0.16

0 0 0 0 0 0 0.49 0.14 0.28 0.01 0.04 0.04

3
777777777777775

5) Step 5: Formulate the smoothness matrix using the theory from
[11]. The continuity conditions for the given triangulation are
formulated using Eq. (31), which must be adapted for the currently
used triangulation in the sense that the location of the “0” and the “m”

in the multi-index is determined by the nonzero value in the multi-
index of the B coefficient located at the respective out-of-edge
vertices (see [11] formore details). In this case, the general continuity
conditions for continuity between t1 and t2 are found by
reformulating Eq. (31) into

ct1�m;κ0;κ1� �
X
jγj�m

ct2�κ0 ;0;κ1��γB
m
γ �v0� � ct2�κ0 ;0;κ2�

TheC0 continuity conditions (i.e.,m � 0) of t1 with respect to t2 are

ct1�0;κ0;κ1� �
X
jγj�0

ct2�κ0;0;κ1�B
0
γ �v0� � ct2�κ0 ;0;κ2�

TheC1 continuity conditions (i.e.,m � 1) of t1 with respect to t2 are

ct1�1;κ0;κ1� �
X
jγj�1

ct2�κ0 ;0;κ1��γB
1
γ �v0�

for example, the C1 continuity condition for the coefficient ct11;1;0 is

ct1�1;1;0� �
X
jγj�1

ct2�1;0;0��γB
1
γ �v0�

� ct22;0;0B1
1;0;0�v0� � c

t2
1;1;0B

1
0;1;0�v0� � c

t2
1;0;1B

1
0;0;1�v0�

� ct22;0;0 − c
t2
1;1;0 � c

t2
1;0;1

where it should be noted that b�v0� � �1;−1; 1�. The complete
smoothness matrix is constructed by formulating the continuity
conditions for all continuity orders and for all edges,moving all terms

to the right-hand side. The smoothness matrix for C1 continuity
between t1 and t2 then is

H �

2
66664
0 0 0 −1 0 0 1 0 0 0 0 0

0 0 0 0 −1 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0 0 0 0 1

0 −1 0 0 0 0 1 −1 1 0 0 0

0 0 −1 0 0 0 0 0 1 0 −1 1

3
77775

where the first three rows correspond to theC0 conditions, and the last
two rows correspond to the C1 conditions.
6) Step 6: Formulate parameter estimation problem. The LS

estimator for theB coefficients can now be formulated with Eq. (29).
In this case, the following values for the B coefficients are estimated:

ĉ � � 0.842 1.1 0.626 0.926 1.23 −0.0192 0.926 1.05 1.23 0.841 0.581 −0.0192 �T

7) Step 7: Model validation. The approximation accuracy of the simplex spline function can now be determined by evaluating the spline
function at specific test points. For example, if the current spline function is evaluated at x, the following set of function outputs is found:

s�x� � Xĉ � � 0.842 0.737 0.979 0.975 0.841 0.926 −0.0192 0.315 0.719 0.975 �T

Appendix B: Example of Nonaffine Spline Models in Control Allocation

This example illustrates the nonaffine nature of spline models and the practical implementation of the control allocation strategies in Sec. VII.
Consider the following spline model for τ:
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τ�x�� δ1p
t1�b�x���δ2p

t2�b�x��� · · · �δjptj�b�x��; 1≤ j≤ J

Each basis polynomial is defined on an individual simplex tj (see also
Fig. A1) in terms of local barycentric coordinates (b0; b1; : : : ; bn).
The Cartesian to barycentric coordinate transformation is a linear
one-to-one transformation given by Eqs. (9) and (10). Let τ�x� be a
bivariate spline function (n � 2) with b�x� � �b0; b1; b2� and with
the spline state x consisting of one aircraft state and one control input:
x � � xa u �T . The first step is to select the basis polynomial ptj in
which the current state �xa�t0�; u�t0�� is defined for the control
allocation process:

ptj �b�x�� �
X
κ

c
tj
κ
d!

κ!
bκ00 b

κ1
1 b

κ2
2 ; �xa; u� ∈ tj (B1)

On the right-hand side of Eq. (B1), the explicit representation for the
B-form polynomial ptj given by Eq. (11) is used. The next step is to
parameterize the B-form polynomial in terms of the control input u
for a fixed aircraft state xa. Let simplex tj be given by

tj � h�v0; v1; v2�i �
	��

0

0

�
;

�
1

0

�
;

�
1

1

��


Using Eqs. (9) and (10), it follows that the barycentric components of

� xa u �T are given by

�
b1
b2

�
�
�
1 −1
0 1

��
xa
u

�
(B2)

b0 � 1 − b1 − b2 � 1 − xa (B3)

CombiningEqs. (B2) and (B3) andwriting as an affine function of the
spline state gives

2
4 b0b1
b2

3
5 �

2
4−1 0

1 −1
0 1

3
5h xa

u

i
�

2
4 1

0

0

3
5 � �a1 a2 �tj

�
xa
u

�
� k

(B4)

At the current aircraft state xa�t0�, the barycentric coordinates can be
parametrized as an affine function of u as follows:

2
4b0b1
b2

3
5 �

2
4 0

−1
1

3
5u�

2
4 1 − xa�t0�

xa�t0�
0

3
5 � a2u� ~k (B5)

By substituting the parameterizations in Eq. (B5) for b0, b1, and b2 in
Eq. (B1), the simplex polynomial can be expressed as a function only
dependent of u:

ptj �u� �
X
κ

c
tj
κ
d!

κ!
�1 − xa�t0��κ0�−u� xa�t0��κ1uκ2

�
X
κ

c
tj
κ Bdκ �u� (B6)

ByTheorem1, the gradient of the basis polynomialptj with respect to
u is given by

∇uptj �u� �
ptj �u�
∂u
� aT2

X
κ

c
tj
κ ∇bBdκ �u�

� �0 −1 1 �

×

0
BB@X

κ

c
tj
κ
d!

κ!

2
664
κ0�1− xa�t0��κ0−1�−u� xa�t0��κ1uκ2

�1− xa�t0��κ0κ1�−u� xa�t0��κ1−1uκ2

�1− xa�t0��κ0�−u� xa�t0��κ1κ2uκ2−1

3
775
1
CCA

� aT2∇bBdtj �u�ctj (B7)

With the parameterization of the simplex polynomial and the
derivation of the gradient, the three control allocation strategies in
Sec. VII can be applied. For example, applying the linear strategy, the
incremental control input for a required demand τreq is given by

Δu � �∇uptj �u�t0���−1�τreq − ptj�u�t0�� (B8)

With the nonlinear strategy, this process is repeated and the solution is
iterated through the Levenberg–Marquardt algorithm.
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